

Engineering Program			
Specialty	Specialty Solar Energy Technology		
Course Number			
Course Title	Thermal Engineering		
Credit Hours	3		
Theoretical Hours 3			
Practical Hours			

Brief Course Description:

Properties of a pure substance, Work and Heat, First law of thermodynamics for closed and opened systems, Principle of heat transfer (conduction, convection, radiation, combined heat transfer mechanisms), Steady state conduction, Heat exchanger

Course Objectives:

- 1. To familiarize the student with basic concepts in thermodynamics and heat transfer and develop an intuitive grasp the subject matter
- 2. Develop an ability to apply these basic concepts to engineering design problems
- 3. To provide the student with necessary analytical skills to solve various engineering problems in the field of Thermal Science, such as Power Generation, Heating, and Air conditioning

Unit Number	iled Course Description: Content	Time Needed
1.	Introduction to Thermodynamics	
2.	Properties of Pure Substances	
3.	First Law of Thermodynamics	
4.	Second Law of Thermodynamics	
5.	Conduction Heat Transfer	
6.	Convection Heat Transfer	
7.	Radiation Heat Transfer	
8.	Cooling of Electronic Equipment	

14

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Lecture

Text Books & References:

□ References:

- 1. Y.A. Cengel, Introduction to Thermodynamics and Heat Transfer, Irwin/McGraw-Hill, 1997.
- 2. Fundamentals of Thermodynamics, 6th Edition Richard E. Sonntag, Claus Borgnakke and Gordon J. Van Wylen John Wiley and Sons Inc., New York, NY, 2003
- 3. Fundamentals of Engineering Thermodynamics, M. J. Moran, H. N. Shapiro 5th Ed, John Wiley & Sons, Inc., 2004, ISBN: 0-471-27471-2.
- 4. J.B. Jones and G.A. Hawkins, Engineering Thermodynamics, Second Edition, John Wiley & Sons, 1986

Engineering Program		
Specialty Solar Energy Technology		
Course Number		
Course Title	Thermal Engineering Lab	
Credit Hours	1	
Theoretical Hours	0	
Practical Hours	3	

Brief Course Description:

Pressure – Temperature relation in the saturation region; Compressor cycles and analyses; Heat pump performance; Conduction heat transfer; Radiation heat transfer; and Heat exchanger performance

Course Objectives:

- 1. To study the relation between the Saturation Pressure- Saturation Temperature relation
- 2. To investigate the main factors affecting the heat pump performance
- 3. To study the performance of reciprocating air compressor

Unit Number	Content	Time Needed
1.	Saturation Pressure- Saturation Temperature relation (Marcel Boiler)	
2.	Heat losses in Heat pump condenser	
3.	Energy balance of Heat pump	
4.	Coefficient of performance of heat pump	
5.	Air compressor polytropic work	
6.	Isothermal efficiency of reciprocating air compressor	
7.	Volumetric efficiency of reciprocating air compressor	
8.	longitudinal Condition in simple bar	
9.	radial Condition in simple bar	
10.	Conduction in composite bar	
11.	Effect of insulation on conduction heat transfer	
12.	Forced convection heat transfer	
13.	performance of parallel and counter flow heat exchangers	
14.	performance of cross flow heat exchangers	

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Laboratory

Text Books & References:

References:

- 1. Y.A. Cengel, Introduction to Thermodynamics and Heat Transfer, Irwin/McGraw-Hill, 1997.
- 2. Fundamentals of Thermodynamics, 6th Edition Richard E. Sonntag, Claus Borgnakke and Gordon J. Van Wylen John Wiley and Sons Inc., New York, NY, 2003
- 3. Fundamentals of Engineering Thermodynamics, M. J. Moran, H. N. Shapiro 5th Ed, John Wiley & Sons, Inc., 2004, ISBN: 0-471-27471-2.
- 4. J.B. Jones and G.A. Hawkins, Engineering Thermodynamics, Second Edition, John Wiley & Sons, 1986.
- 5. Lab. sheets

Engineering Program		
Specialty	Solar Energy Technology	
Course Number		
Course Title	Fluid Mechanics and Hydraulic Machines	
Credit Hours	3	
Theoretical Hours	3	
Practical Hours	0	

Brief Course Description:

Fluid properties, fluid static's, fluid motion, continuity equation, momentum principle, energy principle, Fluid flow in pipes, pipe friction, introduction to Pumps, Types ,Selection and application of pumps

Course Objectives:

- 1. Develop competence in use of conservation laws (mass, energy, momentum) for analysis, design, selection, and operation of flow measuring devices, of open and closed water and waste water conveyance systems, and of hydraulic machines (pumps, turbines)
- 2. Utilize methods for risk and reliability analysis along with engineering economics in selecting components and systems
- 3. Strengthen understanding of phenomena (e.g., cavitation, pressure/flow relations, losses), devices, components and systems with laboratory experiments and field trips
- 4. Improve communication skills through report writing
- 5. Development of dimensionally consistent equations. Competence with both SI and British Gravitational system of units.
- 6. Development of mass, momentum, and energy balances.
- 7. Application of conservation equations for pipe flow, pumping, and simple open channel flow applications

Detailed Course Description:			
Unit Number	Content		Time Needed
1.	Introduction	 Introduction, Units of measurement, fluid physical properties, Density, specific weight, viscosity, surface tension, compressibility 	
2.	Hydrostatics	 Fluid pressure, Pascal's law, Pressure variation in static fluid, pressure head, Gage and absolute pressure, Pressure measurements (barometer, Manometers, Piezometer, Bourdon tube, engineering applications of hydrostatics 	
3.	Equilibrium of Floating Bodies	 Archimedes principle, Metacenter and metacentric height, condition of Equilibrium, Oscillation f floating body 	
4.	Fluid Flow Concept	 Types of flow, Laminar and turbulent flow, uniform flow, steady and unsteady flow, incompressible and Compressible flow Fluid energy: internal energy, Kinetic energy, potential energy, pressure energy Fluid motion equations: Continuity, equation of motion for steady flow, Bennoulli equation and its applications Flow measurement: Flow through Orifice, venture, flow over notches, Pitot tube, rotameter, discharge coefficients 	
5.	Flow through pipes	 Types of flow in pipes, Reynolds number, boundary layer and flow in pipe, loss head in pipes Darcy-Wies formula of head in pipe, relation between friction coefficient and Reynolds Friction loss in sudden contraction and expansion Friction loss in fittings and valves Velocity distributions in pipe flow 	

tallad C **D** • . . •

جامعة البلقاء التطبيقية

6.	Pumps	 Types of Pumps, Principle of operation Pump power and efficiency Net positive section head Reciprocating pumps: Construction, reducing flow fluctuations Positive displacement pumps Gear and screw pumps Centrifugal pumps Pumps performance and characteristics curves Power and efficiency calculations Unit Seven: Compressors
		Reciprocating compressorsCentrifugal compressors

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	/
	Second Exam	20%	/
	Final Exam	50%	/
Homework and Projects		10%	
Discussions and lecture Presentations			

Teaching Methodology:

✤ Lecture

Text Books & References:

- 1. Textbook of Hydraulics, Fluid Mechanics and Hydraulic Machines by R.S. Khurmi, Publisher: S Chand, New Delhi (May 1987), ISBN: 8121901626
- 2. Franzini, Fluid Mechanics with Engineering Applications, 10th Edition, McGraw Hill, 2002.
- 3. Giles R V et al, "Schaum's Outline of Theory and Problems of Fluid Mechanics and Hydraulics", 3rd Edition, McGraw-Hill, 1994.
- 4. E. John Finnemore and Joseph B Franzini, Fluid Mechanics With Engineering Applications, 10th Edition

Engineering Program		
Specialty	Solar Energy Technology	
Course Number		
Course Title	Fluid Mechanics and Hydraulic machine Lab.	
Credit Hours	1	
Theoretical Hours	0	
Practical Hours	3	

Brief Course Description:

Measuring of physical properties of fluids, force on immersed plate, Jet force on plate, Bernoullis equation, Reynolds experiments, flow through orifices, and nozzle venture friction factor

Course Objectives:

At the completion of this course, each student is expected to be able to:

- 1. Validate Bernoullis equation
- 2. Measure the fluid Density and viscosity
- 3. Determine the Force of pressure on immersed plate
- 4. Study the Energy loss and friction coefficient
- 5. Perform Flow rate measurements (by orifice and venture)
- 6. Study the performance of Reciprocating, gear, and centrifugal pumps
- 7. Connect pumps in series and parallel and investigate the performance of each configuration

Unit Number	Content	Time Needed	
1.	Density and viscosity measurements		
2.	Force of pressure on immersed plate		
3.	Demonstrating of Bernoullis equation		
4.	Flow rate measurements (flow through orifice and venture)		
5.	Energy loss and friction coefficient measurements		
6.	Head loss in smooth and rough pipes		
7.	Pipe flow, Reynolds number and laminar and turbulent flow in pipes		
8.	Flow over notches and Weirs		
9.	Pump Testing in Series-Parallel		
10.	Reciprocating pump performance		
11.	Gear pump efficiency		
12.	Performance of Reciprocation air compressor		
13.	Centrifugal Pump Testing		

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Laboratory

Text Books & References:

References:

- 1. Textbook of Hydraulics, Fluid Mechanics and Hydraulic Machines by R.S. Khurmi, Publisher: S Chand, New Delhi (May 1987), ISBN: 8121901626
- 2. Franzini, Fluid Mechanics with Engineering Applications, 10th Edition, McGraw Hill, 2002.
- 3. Lab sheets

Engineering Program				
Specialty Solar Energy Technology				
Course Number	Course Number			
Course Title	Course Title Electricity and Electronics			
Credit Hours	Credit Hours 2			
Theoretical Hours 2				
Practical Hours 0				

Brief Course Description:

Concepts and Definitions, Circuit elements, Circuit analysis, HVACR Controls and Circuits, Electronic devices, Diodes, Transistors, Rectifiers, Amplifiers, Logic gates and IC. Electrical protection and control devices in HVACR

Course Objectives:

Upon completion of this course, the student should be able to:

- 1. Distinguish between AC and DC electricity.
- 2. Determine voltage, amperage, and phasing of electrical supply sources:
- 3. Understand the Current and voltage measurement in electrical DC and AC circuits.
- 4. Apply Ohms and kerchiefs laws
- 5. Conduct Wiring and operating of electrical machines
- 6. Use control and protection devices applications in power electronics and logic circuits
- 7. Under stand and read the Air Conditioning and Heating electrical Circuits

جامعة البلقاء التطبيقية

Deta	iled Course Description	n:	
Unit Number	Content		Time Needed
1.	Fundamental Electricity	 Magnetic theory Electrical Measurements (Meters) Electrical potential, current flow and resistance Electrical power Ohm's law Potential, current and resistance of an electrical circuit Electrical Safety 	
2.	Electrical Circuits	 Ohms Law and the Electric Circuit Series Circuits Parallel and Series Parallel Circuits Circuit Analysis, Batteries and Electromotive Force Inductance and Capacitance Combination Circuits Transformers Power circuits in the air-conditioning industry Symbols and Diagrams for HVACR Systems 	
3.	Component, Symbols of Circuitry of HVAC Wiring Diagrams	 Electrical loads are and their general purpose HVACR Common loads used in HVACR systems. Symbols of common loads used in HVACR systems. Relays and contactors in HVACR systems Symbols of relays and contactors HVACR systems Switches and the types used in HVACR systems Switches and the types used in HVACR systems Symbols of switches and the types used in HVACR systems 	

30

	1	<u> </u>
4.	Basic Electric Motors	 Symbols and purpose of other miscellaneous controls HVACR systems Types of wiring diagrams used in the industry Simple schematic diagrams Advanced schematic diagrams Electrical Wiring Techniques Relays and thermostats Electrical loads are and their general purpose HVACR Common loads used in HVACR systems.
		 Symbols of common loads used in
		HVACR systems.
		 Relays and contactors in HVACR
		systems
		 Symbols of relays and contactors HVACP systems
		HVACR systemsSwitches and the types used in HVACR
		systems
		 Symbols of switches and the types used
		in HVACR systems
		 Symbols and purpose of other
		miscellaneous controls HVACR
		systemsTypes of wiring diagrams used in the
		industry
		 Simple schematic diagrams
		 Advanced schematic diagrams
		 Electrical Wiring Techniques
		 Relays and thermostats
5.	HVACR Electricity	 Electrical circuitry of:
		• Freezer Circuits.
		 Air Conditioning and Heating Controls
		and Circuits.
		Commercial Systems.Standing Pilot Furnaces.
		Standing I not I unaces.

جامعة البلقاء التطبيقية

 Electronic Ignition Gas-Fired Furnaces. Boilers. Oil Heat. Electric Heat. Ice Makers. 	
---	--

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Lecture

Text Books & References:

References:

- 1. ARI Edward F. Mahoney, Electricity, Electronics, and Wiring Diagrams for HVAC/R, 2nd Ed., , Publisher: Prentice Hall, 2006
- 2. Stephen L. Herman, Bennie Sparkman, "Electricity and Controls for HVAC/R, 5th Edition", ISBN 1-401-89513-1.
- 3. Russell E. Smith, Electricity for Refrigeration, Heating and Air Conditioning, 6th Edition, ISBN 0-766-87337-4
- 4. Thomas E. Kissell, Electricity, Electronics, and Control Systems for HVAC, 3rd Edition, ISBN 0-130-09662-8.
- 5. Edward F. Mahoney, Edward Mahoney Electricity for Air Conditioning and Refrigeration Technicians, 5th Edition, ISBN 0-130-10572-4
- 6. Textbook Required: Huran, Thomas F.; Electrical Fundamentals and Systems for HVAC/R, 2000 Prentice-Hall, Inc., 2000
- 7. Understanding Electricity and Wiring Diagrams for HVAC/R, Publisher: Prentice Hall, 2000, ISBN-10-0135178975

Engineering Program			
Specialty	Specialty Solar Energy Technology		
Course Number			
Course Title	Electricity and Electronics lab		
Credit Hours	Credit Hours 1		
Theoretical Hours	Theoretical Hours 0		
Practical Hours 3			

Brief Course Description:

Measuring currents and voltages in electrical DC and AC circuits, Applying Ohm's and kerchiefs laws, Wining and Operating of Electrical machines, Using of control and protections in power electronics and logic circuits

Course Objectives:

- 1. Apply Current and voltage measurement in electrical DC and AC circuits
- 2. Read the electrical diagrams of different HVACR systems
- 3. Conduct Wiring and operating of electrical machines
- 4. Use control and protection devices applications in power electronics and logic circuits
- 5. Under stand and read the Air Conditioning and Heating electrical Circuits

Detailed Course Description:

Unit Number	Content	Time Needed
1.	Investigation of open and closed circuit using a DC voltage source and Resistors connecting in parallel and series	
2.	Measurement of basic electrical quantities using ammeter, voltmeter and avometer	
3.	Electric transformer circuits	
4.	AC current circuit characteristics	
5.	Transistor and rectifier testing	
6.	Using Oscilloscope to study the electrical signals	
7.	Construction of half and full wave rectifier with and without filters	
8.	Logic circuit investigation	
9.	DC motors electrical and mechanical behavior	
10.	Single-phase induction motor operation characteristics	
11.	Construction of simple control loops using relays and cutouts	
12.	Boiler electrical circuit analysis	
13.	Domestic refrigerator electrical circuit analysis	

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Laboratory

Text Books & References:

- 1. ARI Edward F. Mahoney, Electricity, Electronics, and Wiring Diagrams for HVAC/R, 2nd Ed., , Publisher: Prentice Hall, 2006
- 2. Stephen L. Herman, Bennie Sparkman, "Electricity and Controls for HVAC/R, 5th Edition", ISBN 1-401-89513-1.
- 3. Russell E. Smith, Electricity for Refrigeration, Heating and Air Conditioning, 6th Edition, ISBN 0-766-87337-4
- 4. Thomas E. Kissell, Electricity, Electronics, and Control Systems for HVAC, 3rd Edition, ISBN 0-130-09662-8.
- 5. Edward F. Mahoney, Edward Mahoney Electricity for Air Conditioning and Refrigeration Technicians, 5th Edition, ISBN 0-130-10572-4

Engineering Program			
Specialty	Specialty Solar Energy Technology		
Course Number			
Course Title	Course Title Instrumentation and control		
Credit Hours 2			
Theoretical Hours 2			
Practical Hours 0			

Brief Course Description:

Concepts of control system, control loops, block diagram, measurements and control of temperature, pressure, flow rate, level and humidity, pneumatic control, fluidic control, electric and electronic control, control actions, overloads, relays and defrost timers

Course Objectives:

Upon successful completion of this course, the student should be able to:

- 1. Understand the basic concepts and components of control loop
- 2. Draw the block diagram of control system
- 3. Explain the method of temperature, pressure, flow rate, level and humidity measurements and control
- 4. Discuss the difference between the various types of control system
- 5. Understand the function of overload, relays and defrost timer

Detailed Course Description:			
Unit Number	Content		Time Needed
1.		 Measurement and Pneumatics control Testing of Measuring and Pneumatic control devices (Pressure measurements and regulators, Pneumatic relays 	
2.		 Temperature measurement and control devices Operation and Testing of Temperature measurement and control devices such as different types of thermostat, Different temperature measurement devices 	
3.		 Electrical control devices Operation and testing of Electrical control devices: electronic controller, amplifiers, electrical motors, automatic cutouts, relays, Fuses, magnetic switches 	
4.		 Domestic Air conditioner control circuit Control loop elements Control loop construction Defects diagnostic in the control loop: short circuit, winding cutout, relays contact melting 	
5.		 Heating system control system Control loop elements Control loop construction Defects diagnostic in the control loop 	
6.		 Temperature control system Control loop elements Control loop construction Open and closed loop control systems Defects diagnostic in the control loop 	
7.		 Air conditioning and heating control system Control loop elements Switching between heating and Air conditioning Manual control Different types of automatic control systems 	

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Lecture

Text Books & References:

References:

- 1. JohnI. Levenhagen, HVAC Control System Design Diagrams, ISBN 0-070-38129-1.
- 2. Christopher Underwood, C. P. Underwood, HVAC Control Systems: Modelling, Analysis, and Design, ISBN 0-419-20980-8.
- 3. John I. Levenhagen, Donald H. and Spethmann, HVAC Controls and Systems, 1st Edition, McGraw-Hill 1993, ISBN 0070375097.
- 4. S. Don Swenson, HVAC Controls and Control Systems, Prentice Hall, 1994, ISBN-10-0130453609

Engineering Program				
Specialty	Specialty Solar Energy Technology			
Course Number				
Course Title	Instrumentation and control Lab			
Credit Hours	1			
Theoretical Hours	0			
Practical Hours	3			

Brief Course Description:

Measuring and control elements, Temperature, pressure, flow rate and humidity measurement and control, Control system of cooling, heating and A/C processes, Adjustment. Monitoring & troubleshooting

Course Objectives:

Upon successful completion of this course, the student should be able to:

- 1. Conduct temperature, pressure, humidity and Air-Fuel ratio measurements and control
- 2. Test pressure regulator and Thermostat
- 3. Installation and using of overload, relays and defrost timer
- 4. Test the Solenoid Valve
- 5. Differentiate between different type of directional valves used in pneumatic control systems

Detailed Course Description:				
Unit Number	Content	Time Needed		
1.	Pressure measurements			
2.	Pressure regulators			
3.	Temperature measurements			
4.	Thermostat			
5.	Electrical controlling elements (Relay, overload, contractor)			
6.	Expansion Device			
7.	Temperature and pressure controllers			
8.	Three way controllers			
9.	Air ventilation and air conditioning control system			
10.	Solenoid Valve Controller			
11.	Flow rate Measurement			
12.	Humidity measurement and control			
13.	Air Fuel ratio measurement and control			

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Laboratory

Text Books & References:

References:

- 1. John I. Levenhagen, HVAC Control System Design Diagrams, ISBN 0-070-38129-1
- 2. Christopher Underwood, C. P. Underwood , HVAC Control Systems: Modelling, Analysis, and Design, ISBN 0-419-20980-8
- 3. John I. Levenhagen, Donald H. and Spethmann, HVAC Controls and Systems, 1st Edition, McGraw-Hill 1993, ISBN 0070375097.
- 4. S. Don Swenson, HVAC Controls and Control Systems, Prentice Hall, 1994, ISBN-10-0130453609

Engineering Program				
Specialty	Solar Energy Technology			
Course Number				
Course Title	Energy Conversion and Alternatives			
Credit Hours	2			
Theoretical Hours	2			
Practical Hours	0			

Brief Course Description:

Various sources alternative energy: wind energy, photoelectric energy, solar energy, hydroelectric energy, biomass and alternate fuels, Introduction to energy conservation: energy conservation in building, insulation materials, Active and passive techniques of energy conservation

Course Objectives:

Upon successful completion of this course the student should be able to:

- 1. Describe the theory of operation of the many different types of alternate energy components and how they produce energy.
- 2. Analyze the positive and negative aspects of the various alternate energy technologies.
- 3. Explain the world energy situation.
- 4. Acquire specific alternate energy information
- 5. Discuss recommended applications of various alternate energy technologies available and should lead the student to apply this technology in real-life situations.
- 6. Identify and describe the energy conservation opportunities in industrial and commercial systems
- 7. Apply energy auditing techniques.
- 8. Examine the economic evaluation of energy conservation solutions

Detailed Course Description

Unit Number	Content		Time Needed
1. 2.	Energy Sources and System Energy Consumption	 Energy definition and basic concepts. Forms of energy. Energy conversion. Types of energy resources. Energy mix. Energy growth patterns. Energy crisis and its factors Energy sectors within society. Energy use percentages within each sector. Current growth patterns of energy and trends. Various applications. Energy terminology. 	

3.	Types of Energy	Coal	
		1. Coal characteristics.	
		2. Types of coal.	
		3. Availability and location of coal	
		resources.	
		4. Economical and environmental	
		problems associated using coal.	
		5. Coal gasification and liquefaction.	
		 Petroleum Energy 	
		- Availability and location of	
		supplies of oil.	
		- Oil exploration.	
		- Methods of oil production.	
		- Oil transportation.	
		- Pipeline	
		-Water transportation	
		- Tank trucks and railroad cars	
		5. Oil refining.	
		- Characteristics.	
		- Refining processes.	
		6. Oil products and their chemistry.	
		7. Oil shale.	
		- Natural Gas Resources	
		1. Characteristics of these types of	
		gases:	
		- Natural gas	
		- Liquid petroleum gas	
		2. Heating value of LPG and natural	
		gas.	
		3. Associated technology related to:	
		- Distribution and storage of	
		natural gas	
		- Petrochemical industries	
		- Nuclear Energy	
		1. Basic chemistry of nuclear energy.	
		2. Nuclear fuel cycle, including:	
		- Mining	
		- Milling	

- UF6 Production
- Enrichment
- Fuel fabrication
3. Types of reactors.
4. Nuclear waste:
- Characteristics
- Waste fuel
- Storage of waste.
- Volume of waste
- Nuclear waste cycle
- Hydropower
1. Advantages of hydroelectric power.
2. Present and future of large-scale
hydroelectric stations.
3. Pumping storage plants.
4. Small-scale hydroelectric
generation.
5. Environmental problems
associated with dams and reservoirs.
F. Ocean Energy Resources
1. Tidal power.
2. Ocean Thermal Energy
Conversion (OTEC).
3. Wave energy.
4. Ocean current power.
5. salinity gradient power.
6. Ocean bioconversion.
G. Geothermal Energy
1. Types and uses of geothermal
energy.
2. Geothermal resources
development.
3. environmental considerations.
4. regional potential of this
resource in Jordan and Arab countries.
H. Biofuels
1. Gasohol.

		2. Uncertainties concerning
		gasohol.
		3. Biomass and energy farms.
		4. Energy production from waste.
		5. Regional advantages.
		I. Space Base Power
		1. Sources of energy possible from
		space:
		a. Nuclear
		b. Sunlight
		c. Microwave
		d. Artificial moons
		e. Fuel cells
		J. Wind Energy
		1. Using wind as a resource.
		2. Site selection for small wind
		machines.
		3. Large wind electrical systems.
		4. Environmental and economic
		considerations.
		5. Regional advantages for wind
		power.
		K. Direct Solar Energy
		1. Solar collection.
		2. Solar heating systems.
		3. properties of solar storage
		systems.
		4. Solar cooling systems.
		5 Solar photovoltaic systems.
4.	Energy	Common energy converter
	Conversion and	terminology.
	Cogeneration	 Chemical to thermal to mechanical
		converters.
		 Basic electrical principles.
		 mechanical energy and electrical
		energy conversion
l		

جامعة البلقاء التطبيقية

5.	Energy Storage	 Concept of energy storage. Battery storage technology. Hydrogen storage technology. Alternative storage technology
6.	Energy Conservation	 Objectives of energy conservation. Energy conservation in the residential/commercial sector. Energy conservation in the industrial sector. Energy conservation in the transportation sector. Active and passive techniques of energy conservation

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Lecture

Text Books & References:

References:

- 1. Peter Gevorkian, Sustainable Energy Systems Engineering: The Complete Green Building Design Resource, 1st Edition
- 2. Moncef Krarti, Energy Audit of Building Systems: An Engineering Approach, ISBN 0-849-39587-9

Engineering Program				
Specialty	Solar Energy Technology			
Course Number				
Course Title	Building Energy Audit Technology			
Credit Hours	3			
Theoretical Hours 0				
Practical Hours 0				

جامعة البلقاء التطبيقية

Brief Course Description:

Teaches the principles of building energy audit techniques to include diagnostic software. During the course the student will perform an energy audit. As a result of the audit, the student will be able to recommend application of the most appropriate energy-saving treatments such as insulation, windows, appliances and HVAC equipment.

Course Objectives:

Upon successful completion of this course, the student should be able to:

- 1. Understand the physics of energy movement
- 2. Learn about energy audit tools and test equipment
- 3. Understand energy saving materials and methods
- 4. Apply energy audit techniques to various structures

جامعة البلقاء التطبيقية

Detailed Course Description:

Unit Number	Content		Time Needed
1.	Physics of Energy Movement	 Describe Structural heat loss Describe Infiltration Principles Describe Temperature Describe Sensible heat vs. latent heat Describe Heat loss and gain 	
2.	Energy Audit Tools	 Describe Energy Star Ratings Describe Detecting air leaks Blower door, infrared, duct blaster Describe Using Energy 10 software (online) or other software Describe Thermography technology and applications 	
3.	Understanding Energy Saving Techniques	 Describe Structural energy saving features such as windows, doors, and insulation Describe Alternative energy applications that apply to real life situations Describe Energy saving and water saving appliances Describe Heating and cooling (HVAC) equipment and systems 	
4.	Applying energy audit techniques to structures	 Describe energy audit assessment in field situations Describe Using test equipment and tools in field 	

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Lecture

Text Books & References:

References:

- 1. Residential Energy, Cost Savings and Comfort for Existing Buildings, John Krigger and Chris Dorsi, ISBN-13: 978-1-880120-09-5
- 2. Saturn Online and resource program

جامعة البلقاء التطبيقية

Engineering
DecialtySpecialtySolar Energy TechnologyCourse NumberIntroduction to Solar energy
TechnologyCourse TitleIntroduction to Solar energy
TechnologyCredit Hours3Theoretical Hours0Practical Hours0

جامعة البلقاء التطبيقية

Brief Course Description:

Earth and sun relation, Solar angle, Solar radiation, Different collector types, .Solar systems, Large PV systems, Photo-voltaic under concentrated sunlight, Passive cooling and heating.

Course Objectives:

Upon successful completion of this course, the student should be able to:

- 1- Understanding the relation between earth and sun
- 2- Understanding the analysis of solar radiation on the earth.
- 3- Understanding the different collector types.
- 4- Understanding passive cooling and heating

Detailed Course Description:

Unit Number	Content		Time Needed	
1.	Introduction to Solar Rad	liation		
2	Sun earth relations	Sun earth relations		
3	Available Solar Radiation			
4	Selected Fluid and Heat Transfer Topics			
5	Radiation Characteristics of Opaque Material			
6	Absorbed Radiation			
7	Solar Collectors			
8	PV Systems			
9	Passive designs			

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Lecture

Text Books & References:

- 1. Solar Energy Thermal Processes, Duffie, J. A. & Beckman, W. A., Johm Willy & Sons
- 2. Principles of Solar Engineering, Frank Kreth, Jan Kreider, Hemisphere publishing Co
- 3. Solar Energy Utilization, Rai, G. D., Khanna Publishers.

Engineering Program				
Specialty	Specialty Solar Energy Technology			
Course Number				
Course Title	Piping Technology and Plumbing Workshop			
Credit Hours	1			
Theoretical Hours 0				
Practical Hours 3				

جامعة البلقاء التطبيقية

Brief Course Description:

This workshop aims to teach the students how to understand and practice different types of pipes connection and fitting and how to build a central heating set in a building for both hot and cold water networks, and to teach them how to get the proper measurements and sizes during execution.

Course Objectives:

Upon successful completion of this course, the student should be able to:

- 1. Understand different types and sizes of pipes and tubes
- 2. Demonstrate understanding of pips connections and fitting
- 3. Design of Piping Systems (arrangement, supporting, insulation, venting and draining, vessels, Etc
- 4. Understands pipes symbols and abbreviations
- 5. Demonstrate and understand cold and hot water systems

جامعة البلقاء التطبيقية

Detailed Course Description:

Unit Number	Unit Name	Unit Content	Time Needed
1.	Pipes and pipe Fitting	 Types of Pipes Pipes Sizing Standards and codes (Piping Systems, Pipe, Supports, Flanges, Gaskets, Fittings, Valves, Traps, Pumps, Vessels, Heat Exchangers, Symbols and Screw threads) Design of Piping Systems (arrangement, supporting, insulation, venting and draining, vessels, Etc) Ways of joining pipes Pipe work calculations (various parameters calculations, terms, run, set, travel) Offsets (welded, two pieces, layout, rolling, around obstacles) Pipe fitting terminologies Fitting Equipments (in-line Equipment and supporting Equipments) Beveling, Grindings and cutting Flanges (types, symbols, dimensions, Etc) Valves (types, symbols. Etc) Pipe Supports, Pipe Blanking, Elliptical holes and Brackets Fitting Symbols and abbreviations Fittings Dimensions & and fitting Tolerances 	

•			
2.	Tube connection	• Cutting, matching, and toothing	
		black and galvanized metal tubes	
		 Determining cutting, joining, and 	
		welding defects for all types of	
		tubes	
		 Practical applications to upgrade 	
		skills	
3.	Plumbing	 Introducing parts and contents of 	
	technology	hot water heating circle for closed	
		and opened systems	
		Boiler: types, parts, technical	
		specifications, joining and	
		disjoining, maintenance, and	
		comparison between its different	
		types	
		 Burner: types, mechanical and 	
		electrical parts, discussing each part	
		function, illustrating specifications	
		for the different types	
		 Joining and disjoining the parts 	
		maintenance and repair,	
		determining damages and defects,	
		starting up and calibration	
		Pumps: Classifications,	
		specifications, parts, methods of	
		insulating and connecting,	
		determining defects and fixing them	
		 Radiators: Types, specifications, 	
		parts, technical comparison between	
		their parts, connecting and	
		insulating, introducing its	
		connecting systems and the	
		characteristic of each system.	
		• Cylinder: function, types, methods	
		of insulating and connecting	
		 Chimney: types, specifications, 	
		function, maintenance methods.	

جامعة البلقاء التطبيقية

 Expansion tank: function, joining methods
 Diesel tank: function, specifications, joining methods.
 Connection apparatus: shapes, types Practical applications of joining,
grouping, and assembly of hot water heating system.

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ practical

Text Books & References:

Engineering Program				
Specialty	Specialty Solar Energy Technology			
Course Number	Course Number			
Course Title	Sheet Metal workshop			
Credit Hours	Credit Hours 1			
Theoretical Hours 0				
Practical Hours 3				

جامعة البلقاء التطبيقية

Brief Course Description:

This course aims to help the student to be able to perform sheet metal works, fabricate, assemble, alter and install a variety of sheet metal products. Sheet metal principles, blue print reading, metal cutting, filling, joining and flat and rectangular fitting fabrication

Course Objectives:

Upon successful completion of this course, the student should be able to:

- 1. Apply the correct principles of sheet metal pattern development using triangulation, parallel line, and radial line development.
- 2. Read and use blueprints and specifications to estimate, fabricate and install sheet metal items.
- 3. Know, and be able to apply their knowledge of the advantages and limitations of various types of sheet metal used in the trade including non-metallic materials such as plastics.
- 4. Co-ordinate sheet metal work with other trades on the job site.

جامعة البلقاء التطبيقية

Detailed Course Description:

Unit Number	Unit Name	Unit Content	Time Needed
1.	Sheet works and drafting tools	 Basic marking tools (trammel, markers, dot marker, gauge 	
		 marker.) Drawing on simple flat work pieces Drawing on cylindrical work pieces 	
		 Repairing work pieces and removing chip and dust. Practical applications on sheets using drawing tools 	
2.	Metal cutting	 Cutting by using manual and fixed automatic cutters. Cutting by using manual and electrical metal saws. Cutting by using files. Practical applications like rounded cutting, angular cutting, pipe and flat iron shearing, making hollow shapes. 	
3.	Filing	 File types, categories, and applications. File handling and fixing work pieces on vice. Practical applications like filing square and flat iron shapes with different sizes. 	
4.	Metal joining	 Manual and mechanical drilling tools; their types and proper speeds. Methods of metal joining - joining by screws, joining by rivets, joining by welding. 	

		 Practical applications including
		drilling of different sheets and
		flat pieces, and choosing the
		best rivet for drilling and
		joining metals.
5.	Flat and Rectangular	 Apply pattern development
	Fitting Fabrication	techniques to shop applications.
		 Describe how to form pieces for flat
		rectangular fittings.
		 Describe how to form duct
		connection joints.
		 Describe how to assemble various turges of fittings
		types of fittings.Describe how to join duct fittings
		together.
		 Fabricate and assemble plenum
		takeoffs with common shop tools.
		 Fabricate and assemble rectangular
		duct reducers with common shop
		tools.
		 Fabricate and assemble regular or
		change tees or tap-in takeoffs c/w
		curved throats and heels with
		 common shop tools.
		 Fabricate and assemble regular or
		change rectangular 90° elbows with
		common shop tools.
		 Fabricate and assemble rectangular
		regular or change Ybranch with
		common shop tools.Fabricate and assemble regular or
		change rectangular offsets with ogee
		curves with common shop tools.
		 Fabricate and assemble sleeves (e.g.
		fire damper, wall sleeves) with
		common shop tools.
		 Fabricate and assemble rectangular
		and round flex connectors with
		common shop tools.

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

Practical

Text Books & References: References:

Engineering Program					
Specialty	Specialty Solar Energy Technology				
Course Number	Course Number				
Course Title	Solar Thermal Systems I				
Credit Hours 2					
Theoretical Hours 2					
Practical Hours 0					

Brief Course Description:

Determine and utilize available solar energy, sizing of an appropriate auxiliary heating/ cooling system in conjunction with good thermal control. Passive and active solar, ventilation and indoor air quality, analysis and sizing of small auxiliary heating/cooling systems, control of passive solar buildings. Utilize solar energy equipment, techniques and systems, solar water heating, flat plate collectors and concentrators, pumps and controllers.

Course Objectives:

Upon completion of this course, students will be able to

- 1. Define the principles of solar energy
- 2. Describe the components of a solar thermal system
- 3. Apply basic sizing methods
- 4. Understand system design
- 5. Compare various types of systems
- 6. Describe equipment locations within systems

Detailed Course Description:

Unit Number	Unite name	Unite content	Time Needed
1.	Principles of Solar	Types of solar thermal systems	
	Energy	 Site analysis and selection 	
		 Cost vs. energy payback 	
		 Safety methods and regulations 	
2.	Solar Thermal	 Collectors 	
	Components	 Piping 	
		 Pumps and pump assemblies 	
		 Thermal storage 	
		 Heat exchangers 	
		 Controls and controllers 	
3.	Sizing of thermal	 Energy Audit / load determination 	
	systems	 Heating Load 	
		 System Capacity 	
		 System parameters 	
4.	System Design	 Evaluating collectors 	
		 Heat transfer fluids 	
		 System efficiency 	
		 Storage need to load 	
		 Collector area to storage 	
5.	Solar Controllers		
		 Differential Temperature Types 	
		 Thermostats, Sensors, Aquastats 	
6.	Commissioning	 Start-up procedures 	
		 System performance evaluation 	
		 Balancing the system 	
		 Documentation 	

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Lecture

Text Books & References:

References:

- 1. Solar Thermal Water Heating, Bob Ramlow, ISBN:978-0-86571-668-1
- 2. Solar Heating and Cooling of Residential buildings Sizing, Installation, and

Operation of Systems: Colorado State University, ISBN: 1-4102-2459-7

Engineering Program					
Specialty	Solar Energy Technology				
Course Number	Course Number				
Course Title	Solar Thermal Energy II				
Credit Hours 2					
Theoretical Hours 2					
Practical Hours 0					

Brief Course Description:

Advanced sizing and design concepts. Applying the solar resource to varying structures, determining piping paths, interpreting design drawings. Utilize and compare design software. Explore solar related construction techniques for new and retrofit construction applications.

Course Objectives:

Upon completion of this course, students will be able to

- 1. Describe advanced design concepts
- 2. Describe solar concepts of multi-use systems
- 3. Describe solar storage integration with hydronic heating
- 4. Apply solar energy to commercial use systems
- 5. Apply concepts for Solar spa and pool heating Residential and Commercial
- 6. Describe troubleshooting means and methods

جامعة البلقاء التطبيقية

Unit Number	Unite name	Unite content	Time Needed
1.	Review of Basic	Types of solar thermal systems	
	System Types	 Thermosyphon 	
		 Closed Loop 	
		 Open Loop 	
		 Drain Back 	
2.	Understanding	 Building Heating systems 	
	Advanced Systems	 Hydronic 	
		 Forced Air 	
		 Industrial Heat Systems 	
		 Multiple Storage Systems 	
		 Multiple Controllers and Controls 	
		 Advanced Transfer fluids 	
3.	Sizing Larger	 Energy Audit / load determination 	
	Systems	 Heating Load 	
		 System Capacity 	
		 System parameters 	
4.	Advanced System	 Evaluating collector arrays 	
	Design	 System efficiency 	
		 Storage need to load 	
		 Collector/Type area to storage 	
		 Storage integration to distribution 	
		 Building integration 	
		Evaluate Software	
5.	Solar Controllers		
		 Programmable Controllers 	
		 Multifunction Controllers 	
6.	Troubleshooting	 System Assessment 	
	and Maintenance	 System performance evaluation 	
		 Troubleshooting 	
		 Documentation 	
		 System Maintenance plan 	
7.	Cost Analysis and	 Value Engineering 	
	Payback	 Return on Investment 	

76

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	/
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Lecture

Text Books & References:

References:

- 7. Solar Thermal Water Heating, Bob Ramlow, ISBN:978-0-86571-668-1
- 8. Solar Heating and Cooling of Residential buildings Sizing, Installation, and Operation of Systems: Colorado State University, ISBN: 1-4102-2459-7

Engineering Program				
Specialty	Solar Energy Technology			
Course Number				
Course Title	Solar Thermal Workshop I			
Credit Hours	1			
Theoretical Hours	0			
Practical Hours	6			

Brief Course Description:

Demonstrate solar thermal panels, system components and installation techniques. The student will apply the principles of solar energy, site analysis, cost vs. payback, sizing, energy audit, and solar system design into a project. the student will learn additional system control and operation techniques. Includes system and equipment troubleshooting.

Course Objectives:

Upon successful completion of this course, the student should be able to:

- 1. Demonstrate mounting of collectors and equipment for various systems
- 2. Demonstrate wiring of control systems and sensors
- 3. Demonstrate flush and fill methods
- 4. Demonstrate start up

Deta	Detailed Course Description:				
Unit Number	Unite name	Unite content	Time Needed		
1.	Safety and tool use	 Use of proper personal protective equipment Demonstrate proper tool use Use of testing equipment 			
2.	Site Analysis	 Demonstrate Solar Pathfinder Orientation of array Determine best orientation 			
3.	Installation of collector support structure	 Demonstrate layout of system on structure Demonstrate attachments into structure Demonstrate assembly of support frames Demonstrate attachment of collectors to frames 			
4.	Installation of thermal Storage	 Installation of storage system Demonstrate Series and Parallel piping of storage Installation of pressure relief Demonstrate Insulation methods Demonstrate installation of air relief and drain valves 			
5.	Installation of pump systems	 Demonstrate proper placement of components Proper pump orientation Air and pressure relief components Demonstrate installation of valves, meters and gauges. 			
6.	Commissioning/ Start Up	 Demonstrate air pressure testing Demonstrate filling of system, removal of air Demonstrate testing and final operation 			

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	/
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Lecture and Demonstration

Text Books & References:

1.

Engineering
ProgramSpecialtySolar Energy TechnologyCourse NumberICourse TitleSolar Thermal Workshop IICredit Hours1

Credit Hours1Theoretical Hours0Practical Hours6

Brief Course Description:

Apply solar thermal panels, system components and installation advanced techniques. The student will apply the principles of solar energy, site analysis, cost vs. payback, sizing, energy audit, and solar system design into a project. the student will learn additional system control and operation techniques. Includes system and equipment troubleshooting.

Course Objectives:

Upon successful completion of this course, the student should be able to:

- 1. Demonstrate equipment locations for various advanced thermal systems
- 2. Demonstrate wiring of control systems and sensors
- 3. Demonstrate mixing of heat transfer fluids
- 4. Demonstrate troubleshooting procedures

Deta	iled Course Description:		
Unit Number	Unite name	Unite content	Time Needed
1.	Equipment locations in advanced systems	 Demonstrate Schematic design of various systems Demonstrate reasoning for equipment locations 	
2.	Advanced Control Systems	 Demonstrate mounting off programmable controllers Demonstrate operation of programmable controller 	
3.	Installation of collector array	 Demonstrate racking and attachment of multiple collector array Demonstrate piping of array Series piping Parallel piping 	
4.	Installation of thermal Storage	 Demonstrate multiple tank configuration Demonstrate Series and Parallel piping of tanks Demonstrate a Drain-back storage system Demonstrate a Drain-Down storage system 	
5.	Installation of circulation loops	 Demonstrate proper pump placement Demonstrate location and purpose of balancing valves Demonstrate heat transfer fluids and mixing requirements Demonstrate installation of check valves 	

1.10 ъ • . . •

جامعة البلقاء التطبيقية

		 Demonstrate location of drain valves
6.	System Integration	 Demonstrate solar system integration with hydronic heating Demonstrate solar system integration with forced air heating
7.	Troubleshooting and Maintenance	 Demonstrate total system assessment Demonstrate performance evaluation of system Determine corrective action or remedy Documentation Demonstrate a maintenance plan and schedule

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	/
	Final Exam	50%	/
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Lecture and Demonstration

Text Books & References:

Engineering Program			
Specialty	Specialty Solar Energy Technology		
Course Number			
Course Title	Course Title Photovoltaic System I		
Credit Hours	Credit Hours 2		
Theoretical Hours 0			
Practical Hours 0			

جامعة البلقاء التطبيقية

Brief Course Description:

Introduce and explain the theory and operational principles of Photovoltaic systems. Physics behind the steps, conversion of electromagnetic radiation into electrical energy. Basic structure of solar cells, solar cell function, limitations on energy conversion in solar cells, concepts for improving the efficiency of solar cells, PV arrays and other components. Principles of electricity and how to effectively and safely incorporate them into electrical systems.

Course Objectives:

- 1. Solar Resource/Site Evaluation
- 2. Understand and compare Grid Interactive Components
- 3. Describe testing and evaluation methods
- 4. Perform a payback analysis
- 5. Describe safe installation practices
- 6. Describe Commissioning and Troubleshooting procedures

Deta	ailed Course Description:		
Unit Number	Unite name	Unite content	Time Needed
1.	Safety and tool use	Use of proper personal protective	
		equipment	
		 Demonstrate proper tool use 	
		 Use of testing equipment 	
2.	Site Analysis	Describe Magnetic Declination	
		 Describe Compass Use 	
		 Describe Solar Pathfinder 	
		 Describe Irradiance meter 	
		 Orientation of array 	
		 Determine best orientation 	
		 Determine solar resource 	
3.	Grid-Interactive System	 Grid Interactive Direct Systems 	
	Types	 Grid Interactive with Back-up 	
		Grid Interactive Hybrid	
4.	Photovoltaic Components	 Describe Module types and 	
		operation and ratings	
		 Describe Inverter types and 	
		operation	
		 Describe Wiring methods 	
		 Describe Overcurrent Protection 	
		 Describe Disconnect methods 	
5.	Mechanical Integration	• Describe module mounting methods	
		 Describe Balance of System 	
		components and mounting	
		 Calculate environmental effects on 	
		modules and rack structure	
6.	Electrical Integration	 Calculate module voltages 	
		• Evaluate module string voltages to	
		inverter voltage window	
		 Calculate wire sizes 	
		Describe Equipment grounding	
		Calculate voltage drop	
		 Calculate overcurrent protection 	

جامعة البلقاء التطبيقية

7.	Grid Interactive PV Commissioning	 Describe visual system inspection Describe electrical tests Describe commissioning procedure Describe testing of system performance
8.	Grid Interactive Troubleshooting	 Evaluate existing system parameters Describe required Electrical Testing Describe correction options and methods

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Lecture

Text Books & References:

References:

- 1. Photovoltaic Systems, Second Edition, James P. Dunlop, ISBN: 978-0-8269-1308-1
- 2. Photovoltaics Design and Installation Manual, Solar Energy International, ISBN:978-0-86571-520-2

Engineering Program			
Specialty	Specialty Solar Energy Technology		
Course Number	Course Number		
Course Title	Course Title Photovoltaic Systems II		
Credit Hours	Credit Hours 2		
Theoretical Hours 0			
Practical Hours 0			

Brief Course Description:

Continued theory and operational principles involved with battery based off-grid photovoltaic systems. Conversion of electromagnetic solar energy conversion to electrical energy to stored chemical energy in batteries and other storage methods. Students will learn about direct coupled, self-regulating, charge controlled systems along with remote and local off-grid and battery backed up applications.

Course Objectives:

- 1. Describe proper safety applications relative to battery based PV systems
- 2. Ability to apply critical design criteria for Photovoltaic battery based systems
- 3. Describe and compare various Photovoltaic and battery system based components
- 4. Describe System Sizing process
- 5. Describe criteria for component selection

جامعة البلقاء التطبيقية

Detailed Course Description:

Unit Number	Content		Time Needed
1.	Battery System differences from	 Describe added Personal Protective Equipment 	
		Equipment	
	Grid Interactive	 Describe module requirements Describe Investor as an interaction 	
	Systems	 Describe Inverter requirements 	
		 Describe Battery functions Describe Change Constanting in a investig 	
		 Describe Charge Controller in circuit 	
~	D - 44	 Describe solar resource requirements 	
2.	Battery	 Describe Battery Types Describe Battery Electrolyte Requirements 	
	Fundamentals	Desentee Dattery Electronyte Requirements	
		Describe Battery FunctionsDescribe Environmental Effects on	
		Batteries	
		Describe Operational Effects on BatteriesDescribe battery voltage and amp hour	
		calculations	
		 Describe Battery Enclosure requirements 	
3.	Charge Controller	 Describe Dattery Enclosure requirements Describe Charge Controller functions 	
5.	Fundamentals	 Describe Types of charge controllers 	
	I unuamentais	 Describe operational characteristics of 	
		charge controllers	
		 Describe charge controller selection 	
4.	Battery / PV System	 Describe Battery bank sized to Daily load 	
	Sizing	 Describe Photovoltaic system sized to 	
		battery bank	
		 Describe Inverter sizing to operation 	
		requirements	
		 Describe Charge Controller Selection for 	
		system	
5.	Battery System	 Describe module mounting requirements 	
	Mechanical	 Describe location for batteries and Inverter 	
	Integration	 Thermal and Sound Insulation 	
	0	 Describe system enclosure / weather 	
		protection requirements	

جامعة البلقاء التطبيقية

6.	Stand Alone System	 Describe series and parallel circuit
	Electrical	requirements of modules
	Integration	 Describe series and parallel wiring
		requirements of batteries
		 Describe wire sizes requirements of
		various circuits in system
		 Describe overcurrent protection in circuits
		 Describe disconnect methods for
		equipment
		 Describe Equipment Grounding
		Requirements
7.	Stand Alone System	 Describe Visual Inspection
	Commissioning	 Describe Electrical testing
		 Describe start up procedure
		 Describe Evaluation procedure
8.	Stand Alone	 Describe system evaluation process
	Troubleshooting	 Describe system parameters
		 Describe levels of assessment
		 Describe correction methods
		 Describe re-evaluation process

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	/
	Final Exam	50%	/
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Lecture

Text Books & References:

- 1. Photovoltaic Systems, Second Edition, James P. Dunlop, ISBN: 978-0-8269-1308-1
- 2. Photovoltaics Design and Installation Manual, Solar Energy International, ISBN:978-0-86571-520-2

Engineering Program			
Specialty	Specialty Solar Energy Technology		
Course Number			
Course Title	Photovoltaic System Workshop I		
Credit Hours	1		
Theoretical Hours 0			
Practical Hours 6			

جامعة البلقاء التطبيقية

Brief Course Description:

Students learn about current solar collection and conversion equipment, and sizing of Grid-Interactive and to install with maximum performance. They will layout and orient these systems using standard industry tools and testing equipment. Conduit bending, wiring and roof attachments are part of the course as well. Students explore the trouble areas as they might encounter while servicing a PV system.

Course Objectives:

- 1. Demonstrate and conduct a site survey/analysis
- 2. Draw a site plan
- 3. Draw a photovoltaic system on a site plan
- 4. Install a Grid Interactive Photovoltaic System
- 5. Demonstrate commissioning of an installed PV system

جامعة البلقاء التطبيقية

Detailed Course Description:

Unit Number	Content		Time Needed
1.	Site Survey Installation of PV modules	 Demonstrate compass use Demonstrate site selection Demonstrate Solar Pathfinder use Draw a site plan Demonstrate resource assessment Demonstrate layout of system on structure Demonstrate rack attachments to structure Demonstrate racking assembly/ Installation Demonstrate module attachments to racking Demonstrate equipment grounding of modules 	
3.	Electrical Connections	 Demonstrate installation of electrical panels and disconnects Demonstrate installation of overcurrent devices Demonstrate installation of wire of correct sizes/diameters/insulation requirements 	
4.	System Commissioning	 Demonstrate a visual inspection Demonstrate final wire connections from modules (power source) Demonstrate Voltage testing at wire terminations Demonstrate operation of Inverter Demonstrate interaction with Grid power Demonstrate system operation in relation to irradiance and temperature 	

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Laboratory

Text Books & References:

References:

- 1. Photovoltaic Systems, Second Edition, James P. Dunlop, ISBN: 978-0-8269-1308-1
- 2. Photovoltaics Design and Installation Manual, Solar Energy International, ISBN:978-0-86571-520-2

Engineering
DescriptionSpecialtySolar Energy TechnologyCourse NumberSolar Energy TechnologyCourse TitlePhotovoltaic System Workshop IICredit Hours1Theoretical Hours0Practical Hours6

Brief Course Description:

Students learn about design and sizing of Stand Alone PV systems and to install with maximum performance. They will layout and orient these systems using standard industry tools and testing equipment. Installation of batteries, control systems and monitoring systems is part of this course. Students explore the trouble areas as they might encounter while servicing a PV system and create a maintenance plan.

Course Objectives:

- 1. Design a Stand Alone system schematic plan
- 2. Assemble a small Stand-Alone DC Output Photovoltaic system
- 3. Install a Stand-Alone AC output Photovoltaic system
- 4. Demonstrate commissioning and Troubleshoot an installed PV system

جامعة البلقاء التطبيقية

Detailed Course Description:

Unit Number	Content		Time Needed
1.	Sizing and Design of Stand Alone PV system	 Demonstrate Load Analysis Demonstrate Battery Storage sizing Demonstrate Array sizing Demonstrate Charge Controller sizing Demonstrate Inverter sizing/selection Demonstrate Equipment selection Demonstrate Design drawing 	
2.	Installation of Inverter and Charge Controller	 Demonstrate installation of Inverter Demonstrate installation of Charge Controller Demonstrate installation of wire raceways to equipment 	
3.	Installation of Battery Bank	 Demonstrate installation of Battery Enclosure Demonstrate battery ventilation method(s) Demonstrate electrolyte spill containment Demonstrate control of gases 	
4.	Electrical Connections	 Demonstrate installation of electrical panels and disconnects Demonstrate installation of overcurrent devices Demonstrate installation of wire of correct sizes/diameters/insulation requirements 	
5.	System Commissioning	 Demonstrate a visual inspection Demonstrate final wire connections from modules (power source) Demonstrate Voltage testing at wire terminations 	

6.	Maintenance	 Demonstrate operation of Charge Controller Demonstrate operation of Inverter Demonstrate application of a load to system Demonstrate system operation in relation to irradiance and temperature Demonstrate a Battery maintenance and service plan 	
7.	Stand Alone Troubleshooting	 Demonstrate system evaluation process Describe system parameters Describe levels of assessment Describe correction methods Describe re-evaluation process 	

Evaluation Strategies:

Exams		Percentage	Date
Exams	First Exam	20%	//
	Second Exam	20%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
Presentations			

Teaching Methodology:

✤ Laboratory

Text Books & References:

References:

- 1. Photovoltaic Systems, Second Edition, James P. Dunlop, ISBN: 978-0-8269-1308-1
- 2. Photovoltaics Design and Installation Manual, Solar Energy International, ISBN:978-0-86571-520-2